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Limit theorems for probabilities of large
deviations of a Galton—Watson process

S. V.NAGAEYV and V. I. VAKHTEL

Abstract — We prove local and integral limit theorems for large deviations of Cramer type for a
critical Galton—Watson branching process under the assumption that the radius of convergence of the
generating function of the progeny is strictly greater than one. The proof is based on a modified
Cramer approach which consists of construction of an auxiliary non-homogeneous in time branching
process.
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1. INTRODUCTION

Let Z, stand for a Galton—Watson process beginning with a single particle of zero genera-
tion. We set

pk =P(Z1 = k), k=0,1,...,
o
&)=Y pst,
k=0

thus, f(s) is the generating function of the progeny of an individual. Let f (s) denote the
kth iteration of the function f(s). We set B = f"(1), C = f"’(1). Let R stand for the
convergenceradius of the function f(s).

For brevity, we set

27,
Py(u) =P >ulZ,>0]).
Bn
It is well known (see, e.g. [1], p. 39) thatif 0 < B < oo, then for any fixed u
lim P,(u) = e “. (1
n—o0

The first estimate of convergencerate in (1) was obtainedin [2] under the condition C < oo,
namely,

_ In®n
A, =sup|P,(u) —e “|:0( ) 2)
u n
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2 S. V. Nagaev and V. I. Vakhtel

We observe that the constants in this estimate have a more complicated relationship to the
distribution of Z as compared to the classical Berry—Esseen estimate.
If we setu, =1Inn — (2 + ¢) Inlnn, where € > 0, then by (2)
lim sup e“P,(u) = 1. 3)

n—>00 <y,

Ifu > Inn — (2 — ¢) Inlnn, then (2) yields nothing more than the upper estimate

(lnzn)
Py(u) =0 ,
n

which does not depend on u. Thus, estimate (2) for large # contains not so much information
about the magnitude of the ratio P, (1) /e~ ™. As in the scheme of summation of independent
random variables, the problem to estimate P, (u) for large u is much easier to solve under
the condition R > 1.

Under this assumption, in [3] the inequality

1 —k
P(Z, = k) < (1+ yo) (1 + m) , 4)

is obtained, where yq is an arbitrary number from O to R — 1, Bo = f”(1 + yo).
It is easy to see that 1/yp + Bon/2 attains its minimum if yo solves the equation
F"(1 4 y)y* = 2/n, thatis, yo = O(1/+/n). Hence,

Bn
min(1/yo + Bon/2) = -+ 0 (V/n).
Yo
Thus,
2k
P(Z, > k) < (1 +eu)exp _E(l =) |, )
where &, > 0,71, > 0,and &, = O(1/+/n), N, = O(1//n).
Inequality (4) is close to the Bernstein and Petrov inequalities (see, e.g. [4], Chapter 3,

Section 5).
On the other hand, from (3) it follows that

2(1 2k
P(Z, > k) < 2018 o (——>, £y — 0, 6)
Bn Bn
fork < Bn(Inn — (2 + ¢) Inlnn) /2, because [2]
_ Pz 0) = 2 n 4C 2\ Inn n Inn 7
On = n= =By 382 B) w2 O\ 2 ) )

We see that (5) is of less accuracy than (6) in the domain where the latter is valid, because
(5) lacks the factor 2/(Bn).
Under the same assumption R > 1, in [5] it is shown that (3) remains true if
up, = o(n/Innlnyyn), where In y)bBeisithetdthdterationrefthedogarithmuarduly > 2. In
Angemeldet
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Limit theorems for probabilities of large deviations 3

that paper, a local limit theorem is also proved for those & which correspond to the domain
0 < u < u, under the additional assumption that gcd{k: px > 0} = 1. More exactly,

4 2k
P(Z, =k) = ——ex p< n) (1+0(1)) )

uniformly in k = o(nz/ Inn Incyy n).
Starting from the analogy to the scheme of summation of independentrandom variables,
we hypothesise that for R > 1 there exists a domain of values of u where
Py(u) = e Q2 (u)(1 +0(1)), 9

here €2,(u) is an explicitly calculated correction factor, that is, an analogue of the well-
known Cramer theorem is true [4]. The results obtained in the present paper are evidence in
favour of this hypothesis.

Theorem 1. Let R > 1, k/n — o0, k = o(nz). Then as n — 00

P(Z ‘ 4d 2k 2 k1 k 1+0 k+lnn 10
(Zn=k =gz 175, "3’ "\5 2t 49

for k divisible by d = ged{k: py > 0}, where y = 1 —2C/(3B?).

On the base of the local limit theorem, we arrive at the integral theorem on large devi-
ations.

Theorem 2. Under the hypotheses of Theorem 1,

2k 2k k k  In?
P(Z,>k) = iexp{——— y— 1n<—>} (l—i-O (—2+ 1 n)) (11)
Bn Bn B’ n? n n n

From this theorem we derive the exact boundaries where convergenceto the exponential
law takes place.

Corollary 1. Ifu, = o(n/Inn), then relation (3) is true.

It is not difficult to see that these boundaries cannot be enlarged without additional
constraints imposed on the process Z,,. If we set, say, u, = n/Inn, then by (11) and (7)

o 2y
lim e P,(u,) =exp| —— ) # 1
n—0o0 B

for y # 0. In the case of y = 0, convergence to the exponential law takes place for all
u=o(n).
From (7) and (11) it follows that the equality

P,u)=e"

Berelge(s——ulnug 1+ o(1)) (12)

telt von | Universitaetsbibliothek Augsburg
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4 S. V. Nagaev and V. I. Vakhtel

is true for u = o(n), that is, 2, (#) in (9) satisfies the equality
14
Q, () =exp (——u In u) .
n

We observe that, in contrast to the classical Cramer theorem, In €2, (x) depends on the
second and third moments of the initial distribution only. This is likely due to the fact
that the domain where the correction factor is of importance is quite narrow.

Our way to derive relations (10) and (11) differs much from that used in [5]. The proof
of Theorem 1 is based on a modified Cramer method (see, e.g. [4], Chapter 8, Section 2),
which consists of the following.

Let X be a random variable that takes non-negativeinteger values only. We assume that
the radius of convergence of the function p(s) = Es X is strictly greater that one. Then for
any r such that p(r) < oo we set p,(s) = p(rs)/p(r).

The random variable X (r) such that EsX") = p,(s) is referred to as the Cramer trans-
form of the random variable X. With the use of Cramer transforms of the random variable
Z1, we construct a non-homogeneous in time Galton—Watson process Yi, k = 1,... ,n,
such that the distributionof the progeny of an individualin the (k—1)th generationis defined
by the generating function f (rx—1s)/f (rk—1), where the parameters 7, of the Cramer trans-
form are calculated by the recurrence relation 7y = f (rx—1). Then the distributions of the
initial process and the auxiliary one are related as follows:

P(Z, =k = fn(rO)r(;kP(Yn =k), P(Z, > k) = fn(rO)E{r(;Yn; Yy, > k}.

The parameter r( is chosen so that the large deviations of the initial process become normal
ones for the auxiliary process.

Non-homogeneous in time branching processes are studied in [6], where conditions of
convergence to the exponential law are obtained, as well as an estimate of the convergence
rate, which coincides with (2) for a critical Galton—Watson process.

In the classical Cramer theorem, the asymptotic behaviour of the mathematical expect-
ation which connects the distributions of the initial and auxiliary sums is found with the use
of the Berry—Esseen inequality. In the case of branching processes, this method does not
allow us to find the asymptotic formula for E{r Y, Y, > k} because the Berry—Esseen type
estimate for the auxiliary process becomes too rough.

If d > 1, we may reduce the case to aperiodic one. We consider the process Z ; con-
structed by the generating function

g(s) = (f(s"/ N =" prst.
i=0

It is obvious that the convergence radius of g(s) is also greater than one and
d* =gedlk: p; >0} = 1.

Besides, B* = g”’(1) = B/d, C* = g""(1) = C/d*. Therefore, y* = y.
It is not difficult to see that for any n > 1

grésditzestEi(sb)Whiversitaetsbibliothek Augsburg
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Limit theorems for probabilities of large deviations 5

This equality means that the process Z; admits the representation
1
ZF = E(z,g” .+ ZDy, (13)

where Z ,(f), i =1,...,d,are independentrandom variables distributed as Z ,,. This repres-
entation yields the inequality

Pz =ky=PZV + ...+ 29 =kd) >d(1 — Q)" 'P(Z, =kd).  (14)

On the other hand [7],

P(Z, = kd) > P(Z*_ 1_k)le,dP’ L(z* =0). (15)
=1

It is not difficult to see that
> 1
D PP TN (Zy = 0) = (6D =1 + OP(Z; > 0) = =+ 0™,
=1

From (14), (15), and the last relation it follows that

P(Z,=kd)<=P(Z; =k)(1+ omny), (16)

QU — &~

P(Z, =kd) > =P(Z' ,=k)(1+0@"") (17)

n—
uniformly in all k.

If we assume that the theorem is true for the aperiodic case, then, applying it to the
process Z, we obtain

4d? 2kd 2 kd k k Inn
Zr = it i —+—1].
Pz = b= grmen| g~ g (3)) (140 ()

Hence it follows that
. k Inn
PZ,_,=k=P(Z,=k|1+0 Z—FT

for k = o(n?). The two last relations and inequalities (16), (17) imply the equality

Pz kd) 4d 2kd 2 kd 1 k 1+ 0 k n Inn
= = e— — —— — n — — s
" B2z O*P Bn B 2 n n? n

that is, it is proved that validity of (10) in the aperiodic case implies validity of (10) for an
arbitrary f(s). Similarly it is proved that (11) remains true for d > 1 as well. Thus, it suf-
fices to prove Theorems 1 and 2 under the conditiond = 1. It is necessary to note that such
a reduction to the aperiodic case was used in [7] while proving a local limit theorem. But
they derived a similar to (14) estimate without use of representation (13), which contributed

to the difficulties they met. Bereitgestellt von | Universitaetsbibliothek Augsburg
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6 S. V. Nagaev and V. I. Vakhtel

2. AUXILIARY RESULTS

Lemma 1. Let 0 < yo < R — 1, and let the sequence y; be defined by the equation

yier =0 +y) — 1.

Then
B C ; Bj
y=—2 4 ———)—y(,’ 21n<1+—”°>
1+ Bjyo/2 2 3B/ (14 Bjyo/2) 2

) (18)
Y0
ol————).
((1 +BJyo/2)2)

This lemma, as well as its proof, is very similar to Theorem 3 in [2].
Proof. From the definition of y; it follows that

yi=fA+yj+1)— 1L

It is not difficult to see that f(1 +y) > 1+ y for y > 0. Therefore, the sequence y;
decreases. Hence the existence of a limit of y; as j — oo follows. It is obvious that this
limit has to satisfy the equationy = f(1 + y) — 1. But the only root of this equation is
y = 0. This means that y; — O as j — oo and Y_,_, yi = 0(j).

Expanding f (1 + z) into the Taylor series, we obtain

B , C ;3 4
Yj = Yj+1 +5)’j+1 +€)’j+1 +0()’j+1)- (19)
From this relation it follows that

Yj+1 _ 1 Byj+1

= =1-—==+ 00}
: . 2 Jj+1
Yj 1 +§YJ+1/2+0()’J'+1) 2 (20)
y;i
=1- 7’ +0G7).
Dividing both parts of (19) by y;y;+1 and making use of (20) we obtain
: LB (B¢ +03?)
—=—t === ==y yi)=...
i+ oy 2 4 6)7 /
(21)

1 Bj (B2 C\{ U
:—+7—(T—€>Z)’i+0 Zyi
i=0 i=0
Therefore,
y_jB%rejT@e—is_teE{/o—rh \OLSr{iz/érsitaetsbiinothek Augsburg

Angemeldet
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Limit theorems for probabilities of large deviations

This, in its turn, implies that

Yo
= ———— (1 +o(l
Yj ]+Bjy0/2( (1)

and

j—1 il

2

2 Yo
2_0 — -0
2 ZO (1+ Biyo/2)?

_0< /Ooo—dx> 0(0).
~ ")y ¥ Bxyos2? Y0

Now we study the behaviour of le;ol vi. With the use of the inequalities

= Yo 7 yodx 2
Yy ———— <y+ | ———— =yo+—=In(l + Bjyo/2).
£ T+ Biyo/2 ~ o /0 TF Bayga 0ty i+ Biye/2)
= Yo 7 ypdx 2

_— / ————— = —In(1 + Bjyo/2),
P 1+ Biyp/2 o 1+ Bxy/2 B

we arrive at the relation

RN L _
D vi= Zl—i—B 31+ 0(1) = OUn(l + Bjyo/2).

From (21) and the last equality we obtain

1 1 B
— = —+4 —j +0(n(l + Bjyo/2)).
yo o2

Hence it follows that

2

Yo Yo ;

yi=——+ 0| ———1——1In(1 + Bjy/2) ).
"7 14 Bjyo/2 ((1 + Bjyo/2)?

(22)

(23)

(24)

(25)

. . . . i—1 . .
With the use of this relation we estimate Z{zo y; with the accuracy required to prove the

lemma:

8 = w (1 + Biyo/2)
D= =t 0 )
= P 1+ Biyo/2 P (1 + Biyo/2)

It is not difficult to see that the second term in the right-hand side of the preceding equality

is O (y0).
Making use of (24) and (25) again, we obtain

2
> i =2+ Bjyo/2) + 0(0).

i=0 Bereitgestellt von | Universitaetsbibliothek Augsburg
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8 S. V. Nagaev and V. I. Vakhtel

Using (21), (23), and (26), we arrive at

: l—i—B' 5 C)l(l-i—B' /2) + O(y0)
— T — — —_ — e — n .
v, Yo 2] 5> 3B JYo Yo

The lemma is thus proved.

Wesetrp =1+ y, andfori = 1, ..., n define the probability generating function
S (sfj-1(ro))
8i(s) = ———".
fi(ro)

We introduce

-1

. Bj+1 .
Aj=gi(1), A =A1...A;, Bi=g/(), T = E —L—A(j).
i 244

Lemma 2. If yo — 0, then

, 1+ Bnyo/2 \°
A(j) = 14+ 0(y0)), 27
() <l+B(n—j)y0/2> ( yo)) (27

BIl(1 + Bnyy/2)
T() = 1+ 0 2
O] 20+ B —l)y0/2)( + O (y0)) (28)

uniformlyinl < j <nandl <1 <n.

Proof. From the definitions of A(j) and g; (s) it immediately follows that

A(j) =

j—1
Hf( + i) = exp Y I f'(1+yu-i)
i=0

f,() f(o)

With the use of the relations
fA+2)=1+Bz+ 0, IW(l+10)=t+0@>,

we obtain
j—1 j—1

. 7o 2
A(j) = expy B Yn—i + O v
f}(rO) p IZ: n—t Z n—i

By virtue of (23) and (26),

A(j) = CXP {2In(1 + Bnyo) — 21In(1 + B(n — j)yo)) + O(yo)}

fj

2

. I+ 0(0)).

1+ B(n B_e«]e}t)é(é/ It von | Universitaetsbibliothek Augsburg
Angemeldet
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Limit theorems for probabilities of large deviations 9

It is not difficult to see that

ro 14y
fitro) 14 ynj

=14 0®o).

The two last relations imply (27).
Let us turn to the proof of (28). It is obvious that

B; = B(1+ O(y0)), Ai =1+ O(yo)
uniformly in i. Therefore,

-1

B
T =132 A0 | A+ 0060).

j=0
Using (27), we obtain
T(l)—lfjE L+ Brvo/2 )2(1+0( ) 29)
L3\ T+ B — j)vo/2 Y0))-

j=0
Furthermore, since the function B/(2(1 + Bxyg /2)2) decreases, the inequalities

-1

/"“ Bdx Z(l \ B — yyo/2)2 / Bdx
———————————————————————— n — ————————————————————————
wi+1 20+ Bxyo/2)2 )0 w1 2(1 + Bxyo/2)?

are true. It is not difficult to see that each integral in the preceding inequality is

B
2(1 + Bnyo/2)(1 l+3(n “Dyo/2) (I+ 0(o)).
Therefore,
3 Bl
JX(:)(I + B(n — j)yo/2) ST Ty T o (U CONN

From (29) and (30) we arrive at the required relation.

Let
o
p(s) = prs*;
k=0
we set
o
el =Y 1xl.
k=0
It is obviousthat || - |1 possesses all prepiertiesiofannoimversitaetsbibliothek Augsburg
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10 S. V. Nagaev and V. 1. Vakhtel

Lemma 3. Let p(s) be a probability generating function. We seta = p’(1), b = p”’(1).
Then

L __L 2 +ww—<m“ 2 31)
1—p@s) a(l—s) 2a? 1 p(s)’
where
5(s) = b(p(s) =1 —a(s—1) s) = p(s) —1—a(s — 1) —b(s — 1)° /2
B 2a2(s — 1)2 ’ )= ais —1)3

"

If we introduce the extra constraintc = p""'(1) < oo, then

b2 c
[6Cs) = n()llh = — +—
6a’

Proof. From the equality

1 1 p(s)—1—a(s—1Y\ (1—y)
- = (32)
1—p@s) a(l—y) a(s —1)?2 1 —p(s)
it follows that
1 1 b(1—s) (1—15)2
- = —n(s)———. (33)
I—p@) ad—s) 2a(l—p(s)) 1 —p(s)
Furthermore, (32) yields
1—=s 1 s)—1—a(s—1 1 —s)2
=_+<m> (=D a=s? a8
1—p(s) a a(s —1) 1—p(s)
Substituting this into (33), we finally arrive at relation (31).
It is easy to verify that
k—1i—1
p(s)—1—a(s—1) s .
TR SLD B DL
§ k=2 i=1j=0
Therefore,
—1- —1 b
p(s) a(s—1) _b 35)
(s — 1)2 .2
Similarly we find that
,o(s)—l—a(s—l)—b(s—l)2 c
==, 36
(s —1)3 | 6 (36)
Inequalities (35) and (36) yield the estimate
18(s) =)l < 18+ )l r +—
S) — N S k) = — —_,
n 1= 1 n =12 T
which proves the lemma. Bereitgestellt von | Universitaetsbibliothek Augsburg
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Limit theorems for probabilities of large deviations 11

We set
Gi(s) =gio...og1(s) = fi(ros)/fi(ro), qgi(s) =1—G;(s).

In what follows we assume that yo — 0.

Lemma 4. Foranyi > 1, the inequality
lgi()llt = 2(Qi + yn—i) (37)

is true. From this bound it follows that q;(s) — 0 asi — oo uniformly in s inside the unit
disk.

Proof. Let
o0
p(s) = pist
k=0

be a probability generating function. It is easy to check that

1= p@)lh =1 —po)+ Y o =2(1— p(0)).
k=1

Applying this equality to G;(s), we obtain

A >>:2fl(o> 5O 04 fre— 1.

fi(ro) fi(ro)
Since f(ro) = 1 + y,—;, we arrive at inequality (37).

The convergence of ||g; (s)||1 to zero follows from the facts that O; — 0 asi — oo and
yo — 0. The uniform inside the unit disk convergence of g;(s) to zero follows from the

inequality sup s <y |gi ()| < llgi ()1

llgi ()l =2 <1

Lemma 5. Let gcd{k: py > 0} = 1. Then there exists N such that

(38)

1 j—1 N\ ) -1
g (s) = —2) (1 R+ Ty ADGi()Ci (s))

(1=5)"1+T() (1=9)"'+T())

for j = N, |s| < 1, where Ci(s), Ry(s) are some analytic in the unit disk functions, and
ICi(s)lIh = C, [IRn ()1 < oo

Proof. Substitutingp = g;+1, s = G; into (31), we obtain the equality

q;(s)
Ajr1gjr1(s)’

1 Bj4i
gji+1(s)  Aj+1g;(s) 2A12Jrl

—dj+1(5)

where

dj+1(s) = —Aj11 @reittbstegpn) bnyeraidetsbisl(shik Augsburg
Angemeldet
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12 S. V. Nagaev and V. 1. Vakhtel

Multiplying both sides of this equality by A(j + 1), we arrive at the recurrence relation

a7 (s)
bjt+1(s) = bj(s) + A(J) —dj+1(5)A())
Aj+ gj+i1(s)’

where b;(s) = A(j)/q;j(s). From this equality we easily derive the following expansion of
the function b; (s):

j—1
bi(s) =bn(s)+T(j)—T(N)— ZA(i)Qi(S)Ci(S)
i=N
1 T
=+ T() = Ry(5) = D AW ()Ci (),
i=N
where
Ci(s) = di+1(5)qi /qi+1(5), Ry(s) = (1—5)"" 4+ T(N) —bn(s),

N is an arbitrary positive integer less than j. This proves representation (38).

It remains to prove that the functions C;(s), Ry(s) are analytic and their norms are
bounded.

From Lemma 3 it follows that

(g (1) gfiy (D
Idj+1llh < Aj+18j+1ll1 + Imj+1llD) < + . (39)
4441 6
From this relation it follows that ||d; 1 || are uniformly bounded.

If we assume that gcd{k: px > 0} = 1, then the function (1 — p(s))/(1 — s) has no
zeros inside the unit disk. If 5o were a zero of this function, then p(sg) = 1. Therefore,
|so] = 1 and s(’)‘ = 1 for any k such that px > 0. From the aperiodicity condition it follows
that the only point which satisfies these conditionsis so = 1. But this point does not make

the function (1 — p(s))/(1 — s) vanish because

ee]

=Y o+ 45 Do =a

s=1 k=1

1—p(s)
1—=s

By virtue of the Tauberian theorem due to Wiener (see, e.g. [8]), the function
(1 =5)/(1 — p(s)) is analytic and ||(1 — s)/(1 — p(s))|l1 < oo.

From aperiodicity of the sequence py it follows that the coefficients of the function g; (s)
also form an aperiodic sequence. Therefore,

Furthermore, relation (34) yields the estimate

qj
qj+1

H 1—s
< || —_—_—_—
1 —gj+10) ||,

qj
qj+1

Bj+1
~ Bgrejtges@Avon

@Pygr‘Litgé{éMﬂbhothek Augsburg
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Limit theorems for probabilities of large deviations 13

Making use of Lemma 4, we conclude that

for all j exceeding a certain threshold value and for sufficiently small y .

From (39) and (40) it follows that the norms of C; (s) are bounded for all i no less than
a certain N.

Let us consider the function R y (s). It is clear that

qj
qj+1

<2 40)

1

1 1
gn(s)  AN)(1—s)

RN ()l = T(N) + A(N) ‘

1.
Setting p(s) = Gy (s) in (32), we obtain
1 B 1 _<GN(s)—1—A(N)(s—1)> 1—s

gn(s)  AMN)Y1—s) A(N)(s — 1)? gn(s)

Making use of equality (35), we find that

G TN

HGN(S) —1—=AN)s -1

A(N)(s — 1)? . 24(N)  2A(N)’
Therefore,
‘ (I 1 I | 1=
gnG)  AMNA =97 2 favG

The boundedness of ||[(1 — 5)/gn(s)||1 follows from aperiodicity of the coefficients of the
function G y(s) and the Wiener theorem mentioned above. Finally, we see that R y(s) is
bounded in the norm.

Lemma 6. Asi — oo,

(1—5)"1+T@)
qi(s) (T) —1 (41)

uniformly in all s inside the unit disk.

Proof. 1t is clear that in order to prove the lemma it suffices to check that the function
i1, .
Ry () + 3y A()gi(5)Ci(s)
(1=$)""+T(@)

converges to zero uniformly in the unit disk. Let «;, B; be numerical sequences satisfying
the conditions

n
E o —> 00, Bi — 0.
i=1

Then, as we easily see,
Z?:] i Bi
BeElfgqs@%IIt von | Universitaetsbibliothek Augsburg
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14 S. V. Nagaev and V. 1. Vakhtel

From the definition of 7 () it follows that

j—1
> AG) = 0T ().

i=N
By virtue of Lemma 4, g; (0) — 0. From the abovesaid it follows that

>/ v AG)qi(0)

0. 42
ST “2)

It is obvious that

Ry (s) + X028 A qi(s)Ci(s)
(1—s)" 1 +T(j)

_ IRy + 38 AD g )G (S)||1
()

1

Since ||Ry(s)|l1 < oo and T (j) — oo, the relation || Ry (s)|l1/T(j) — 0 is true. Making
use of Lemmas 4 and 5, we obtain

2C
r )ZA@)nql(s)nlnc )l = 70 )ZA@)q,(m

In view of (42), the right-hand side of the last inequality tends to zero. Thus,

Ry (s) + Y120 AG)qi()Cis)
=91 +T()

This, in turn, means that the function

Ry (s) + X1 n AG)qi()Ci(s)
=5 1+7()

converges to zero uniformly in s inside the unit disk. The lemma is thus proved.
Let p(s) be a power series. Let ax[p(s)] denote the kth coefficient of this series.

Lemma 7. Let p(s) be a probability generating function and p'(1) < oo. Then the
inequality

1 a .
alp®)1 =7 / '@l di 43)

holds for any a > 0.

Proof. 1t is obvious that the function p’(s)/0’(1) is a probability generating function.
The following bound for the concentration function is well known [4]:

— 1
Slip P(X = x)Bfer %ge@tgﬂt Sén)\ Unjershgg g!)% bthek Augsburg
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Limit theorems for probabilities of large deviations 15

where ¢ (¢) is the characteristic function of the variable X, a > 0.
Applying this bound to the random variable whose distribution corresponds to the gen-
erating function p’(s)/ 0’ (1), we obtain

sl;paz[p’m/p’(l)] < (96/95)%a"! / 1p'(e")/p' (1)) dt.
It is not difficult to see that !
alp()] = ; ailp’(s)]

forany ! > 1; the two last relations prove the lemma.

Lemma 8. There exists a constant My such that

/ . B;
IGL®)| = MiAK) exp 1= > —=R(gi-1(5)) (44)

i=1

Proof. From the definition of G (s) it follows that

k k
Gi(s) = [ [ 8/(Gi-1(s)) = exp {Zlng;(Gil (s))} :

i=1 i=1

Now, by virtue of the equalities
gi(s) = gl() + Bi(s — 1) + O((s — 1)),
Ing/(s) =1Ing/(1) + In(1 + Bi(s — 1)/g(1) + O((s — 1)?))

’ B; 2
=Ing;(1) + ?(s —1D4+0((s — 1))

we obtain

k
B;
G(s) = A(k) exp {— Z - di-1 (s)+ 0 (Z at, (s)) } . (45)

i=1 i=1

Making use of inequality (37), we see that

k k—1 k—1
Yolgici)F <4 07 +4Y v (46)
i=1 i=0 j=0

Boundedness of the former sum in the right-hand side of (46) follows from the fact that
Qi = O(1/1i), while boundednessof the latter sum, from (23). Hence there exists a constant

M such that
kB,
exp {-Z#%Nﬂ”-

i=1 !

|G ()] < M1 A(k)

Taking into account the formula |e *|z= ¢l oone amive at the inequalitywie sc64p 19 prove.
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16 S. V. Nagaev and V. 1. Vakhtel

Lemma 9. There exists a positive integer N such that the inequality

kop 2
> oty = %1“( AT + D1 = cosy) )—a(N) (47)
J

; Sm t
j=1

is true for allk > N, where a(N) is some constant.

Proof. By virtue of Lemma 6, as j — oo,

{a=9t+T()
q’(”( A) )ﬁl

uniformly in s inside the unit disk. This means that there exists N such that for all j > N

AGj) }_1 N[ A(j) H
(I=)"1+TG)] 4] LA=-9)"1+T0G) ]|
1 _ 1 _1 isint

1—s (1—cost)—isint 2 2(1 —cost)’

3
N(gj () = — 7 [

We set s = e'’. Making use of the relation

we obtain

%[ A(j)) } _ 2A(HRT(GHY+ 1D

(1—5)""+TG) ] @T()+ D2 +sin®r(1 —cost)~2
~ [ A()) } 2A(j)(1 —cost) sin~ ' ¢
~S = —
1—9"14+T) 14+ QT () + D2(1 — cost)?sin" > ¢
Therefore,
— k—1 . .
3 Z Bj+1 2A(HQRT(H+1)
— A Ajr1 2T (j) + 1?2 +sin?1(1 — cos )2
k— . .
_lXI:Bj“ 2A(j)(1 —cost)|sin 1t| 48)
4 A1 1+ QT () + D21 —cosn)?sin~ 21
By the definition of 7'(j),
Bj+1
A( =T+ 1) —=T()=AT().
24+
Hence,
"f: 4QT(j) + DAT()) . /2”")“ 2x dx
~ T (j) + D2 +sin?1(1 —cost)=2 ~ Jarwvy+1 x2 +sin®1(1 — cost)~2

gm ! Bereit,

2 2 2
:m( QT (k) + 1)2 (1 cost)) 1( QT(N) + 1)>(1 — cost)). )

estellt van | Umversnaetsblbﬁlotﬁek Augsbur
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Limit theorems for probabilities of large deviations 17

Similarly we find that

1 kii Bjy 2A(j)(1 —cost)|sin~ ! 7] - /Oo dx T
0

< =—. (50)
44~ Aj1 14+ QT()+ 121 —cost)?sin 2t

2
= 1+x 2

Now the validity of the lemma immediately follows from (48), (49), and (50).

Lemma 10. There exists a constant My such that,

A(k)

IT (k) ©h

lailgk ()]l < M2

forallk,l > 1.

Proof. 1t is obvious that a;[gx(s)] = —a;[Gk(s)]. Therefore, it suffices to prove that
(51) is true for the coefficients of the function G (s).
From Lemmas 8 and 9 it follows that

sin7|3/2

G’ ity < Ak T73/2 k St —
1G] = 1 AWT s

(52)

where c1 is some constant.
Setting p = G, a = 7 /2 in inequality (43), we obtain

1 , .
a)[Gr(s)] < - </ |G (e dt +/ |G (e dt) . (53)
L\J1y1w<it)<n/2 ltl<1/T (k)

The obvious bound |G;€(e"’)| < G, (1) = A(k) implies the inequality

A(k)

|G (e dt <2 ——=. (54)
/z<1/T<k> ¢ T (k)

It is not difficult to see that
| sint| - 2

[1 —cost| — |t|

Applying this bound to the right-hand side of (52), we conclude that
Gi(e™)] < 4t AT (11|72,

Therefore,

) Ak
/ |G (e dt < 4c1 A)T /> (k) 1t|732dt < cs @
T (k) <|t]<7/2 T k) <|t|<7/2 T (k)
(55)

Combining (53), (54), and (55), we &eivé@tsthe: inequatitywieawishsid te: proxvsburg
Angemeldet
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18 S. V. Nagaev and V. 1. Vakhtel

Let {tx}{° be a sequence of positive numbers satisfying the condition

Tk
K: =sup sup [ — | < o0.
n>1k>n/2 \Tn

For any p(s) such that ||p(s)]|1 < oo we set

P (p) = sup|pnl/Tn-

n>1
In [9], the inequality
Pr(p102) < K (P (pDlp2ll1 + P (p2) o1 1l1)

was established. With the use of this bound, we arrive at the following assertion.

Lemma 11. Let
o0
NOED I
i=0

be a series with non-negative coefficients which converges for |t| < to. Then

Pr(M(p)) < ¥ (Kcllpll1) Pz (p)
for any p(s) such that K. ||p|l1 < to.
Proof. With the use of induction, from inequality (56) we derive the bound
P:(0') < Hillpll\™" Px(p),
where H; are defined as follows:
Hi =1, Hit1 = K. (1 + H)).
It is clear that K; > 1. Hence,
Hiyi < K.+ K. H<...<(@i+ DK

Therefore,
Pe(p) <iKiipli P (p).

On the other hand,
oo
Pr(M(p) <D XiPc(ph).
i=1
Combining the two last inequalities proves the lemma.
In what follows we set 7, = n~ 'Bdtdseleatithat Kjni=2Ritaetsbibliothek Augsburg

Angemeldet
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Limit theorems for probabilities of large deviations 19

Lemma 12. There exists a constant M3 such that the inequality

A(i)
P (C) < Msm (58)

is true for all i no less than a certain N.

Proof. Let 8(s) be defined as in Lemma 3. We assume that the generating function o (s)
that determines § (s) converges in the disk of radius R = 1 + 7¢. It is easy to verify that

2
i=2

@) .
8(s) = LZ:O (1) 1)172.

Let g (s) be a power series of finite norm which satisfies the condition ||g|| | < fo/ K. Then,
by virtue of Lemma 11,

b = o0 .
Pe(3(1—¢) = Pr(q)ﬁ Z 2D~ kgl
a5 (59)
= Pe@) 7 p% + Kellglhn.
From Lemma 10 it follows that
AQ)
Pr(gi) < Mzm (60)

Since ||g;||1 and yo tend to zero, the inequality

R+1
(I +2[lgillD T+ yo) <

holds for alli > N. It is easy to see that

(3) A3)

grl+x) =0+ yo)2 £+ x)(1 + yo)).
Setting p = gi+1, ¢ = ¢; in (59) and taking into account the two last bounds, we obtain

Bz+1 3)
Pr(Si+1(1 —qi)) < Pr(qz)zA 1+ 302 fPUR+1)/2).
i+1

Since
Bit+1 = B(1 + O(yo0)), Aiy1 =14+ 000)

and inequality (60) is true, there exists a constant ¢ | such that

PeGis (1= ) = 1. 61)
The same reasoning yields
P, A(i)
(nB*élréﬂlges%lpt)veﬂ ?@W(ﬂsltaetsblbllothek Augsburg
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20 S. V. Nagaev and V. 1. Vakhtel

From the two last relations it follows that

A)
Pr(di+1) < Ait1 Pr (61 (1 — ) + Ai1 Pr (i1 (1 — qi)) < C3m. (62)
Further, setting p = gi+1, s = ¢; in (34), we obtain
qi(s) 1 24 qi(s)
—— = + i1 (1 — gi () ———.
qi+1(s)  Ajt1 Biti qi+1(s)
Therefore,
14l
qi(s) 1 24, ! I
= 3 1(1 —qi(s))g;(s).
gi+1(s) At g Bl,, ! L

Applying inequality (56) to the functions ;41 and ¢;(s) and taking (61) into account, we
arrive at the bound

A(l)
Pr(8i+19i) < C4m.
From this bound and Lemma 11 we find that
A() 2411 2 AG)
c(qi/qgi+1) < ¢s5 0 < B, 18i+1111 llgillh < C6T(i) (63)

Applying inequality (56) to the functions d;11 and g;/qi+1, with the use of relations
(62) and (63) we complete the proof of the lemma.

3. PROOF OF THEOREM 1
Without loss of generality we assume that k > Bn/2. Let

4 2
Yo = B2n2  Bn’

From the hypotheses of the theorem it follows that yo — 0 as n — o0. It is not difficult to
verify that

P(Zy = k) = al fu()] = 1y ¥ furo)arl fa(ros)/ fn(ro)]

—k —k (64)
=1y (1 + yo)ar[Gn(s)] = —ry " (1 + yo)ak[gn(s)].

Setting yo = 4k/B?n> —2/Bn in Lemma 1, we obtain

_ 2 l+B 2 121(2k/B)+0(’2)
yn_Bn k 2)/ Bn k n " " '

Removing the brackets, with the use of the inequality In x < x, we arrive at the relation

2 1 2 1 5

Yn =g~ PeleigpbER lB/ kv dBisbibiothek Augsburg
n n
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Limit theorems for probabilities of large deviations 21

Therefore,

2k 2k

Let us turn to the study of the asymptotic behaviour of a[g,(s)].
Lemma 5 yields

B A(n) gn(s) =
L e A e (R~<s>+l§NjA<z>cl(s>ql<s>>.

Hence,

A(n) :|
1=5)"1+Tm

qn(s) n—1 . |
+a; |:(1 — 1+ T (RN(S) +,§V A()Ci(s)qi m)] . (66)

ailgn(s)] = a [

It is easy to check that

ee]

1 T 1 Z(T(n)>flj
=9 +Tw 1+Tw (a+7m? Z\1+Tw)

Therefore,

= Fi+ F, (67)

qn(s) —
“ |:(1 )71+ Tm (RN(S) + ZA(Z)CI(S)%(S)>:|

i=N

where

Fl=———
1+ T (n)

n—1
ai |:Qn (s) (RN(S) + Z A@)Ci(s)gi (S))} ,

i=N

gl = ,
T a+Tm)? (”RN(sNh +,§ ADIC$)]h ||q,<s>||1> :

We begin with estimating ;. Lemmas 10, 12, and inequality (56) imply the bound

A@)
P (Cigi) < Clm
Again making use of Lemma 10 and (56), we obtain
A(n) A()
Pr(qnCiqi) < i =+ llgn
(@nCigi) = c2 (IIq ||1T( ) llq. ||1T( )>
An) A@)
Iger?e %‘s(teﬂtp@m d_n@@l(s Pag‘t@b)b iothek Augsburg
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22 S. V. Nagaev and V. 1. Vakhtel

Lemma 6 guarantees the existence of constants c¢3, ¢4 such that

A(l) Al)
—— < q:(0) < cy—= 68
C3T(i)_q’()_c4T(i) (68)
for all i. From the two last relations we find that
n—1

> A(i)gi(0).

i=N

n—1 n—1 A
P, (qn > A(i)cl-ql-) < Y AP (qnCigi) < cs )

i=N i—N T(n)
Lemma 3 and relation (7) imply the inequality
gi(0) < ce(yni +i 1) <ce(yo+i™h).

Since A(i) increases,

n—1 n—1

> A@Dgi0) < ceyoT (n) +c6 Y AGD)i™!

i=N i=1
< ceyoT (n) + c6A([n/2]) Inn + 2c6T(m)n~" < c7(yoT (n) + Inn),

(69)

because A([n/2]) is bounded and n -1 < cgyo. We thus obtain
n—1
P, (qn 3 A(i)cl-ql) = 0(Am(yo+ T~ () Inn)).
i=N

Therefore, if [ > aT (n), then

14+ T(n)

n—1 A
a [qn ) Y AGCi(s)gi (s)]‘ =0 ( @ (gt 7! (n)lnn)) (70)

i=N Tz(n)

forany o > 0.
By virtue of Lemmas 5 and 10,

ai[gn(s)Rn ()] < RN ()1 sup a:[gn(s)]+ lgn(s)ll1 sup a:[Rn(s)]

t>1/2 t>1/2

< 24(@) c A) sup a;[Rn(s)]
ST T W)

By the definition of Ry (s),

1 1
alRy ()] = A(N)ay [1 —5 A _s)]

The fact that G’/\,(l) < 00 and the result due to Gelfond [10, 11] yield

sup aé[RN(s)g =0T~ '(n))

)
1>1/2 ereitgestellt von | Universitaetsbibliothek Augsburg
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Limit theorems for probabilities of large deviations 23

for! > aT (n). Therefore,

1 (s)Ry(s)] = O ﬂ) (71)
H_T(n)al[qn S)Rn(s)] = T3(n)
forl > oT (n).
From (70) and (71) it follows that
Fi=0 &(yo + T ') Inn) (72)
T2(n) ’

if ] > aT (n) for some « > 0.
Let us estimate 2. By virtue of Lemmas 3, 5, and relation (69),

n—1 n—l1
3" ADOICI®N1llgi )l <2C Y A@gi(0) = OT () (yo + T~ () Inn)).
k=N k=N

In view of the equality ||g, (s)]l1 = 2¢»(0) and (68),
n—1
lgn ()1 (IIRN(S)||1 + Z AW@Ci(s)Ih ||ql‘(s)||1) = 0(A()(yo + InnT ' (n))),

k=N

which yields

Fr,=0 (ﬂ(yo +77! (n)lnn)) ) (73)
T%(n)

From (66), (72), (67), and (73) it follows that the relation

-1
a/lgn(s)] = A(”)( o ) +0<A(”) (yo+T1(n)1nn)>

CT2(n) \1+T(n) T2(n)
is true for all/ > o T (n). Hence,

A(n)
T2(n)

l
ailgn(s)] = — CXP{—W} (1+ O(yo + T~ () Inn)) (74)

holds uniformly in @7 (n) <1 < BT (n), where «, B, @ < f, are arbitrary real numbers.
From the definition of yo and formulas (27), (28) it follows that

A(n)

T () =k(1+ 0(y)), T = T

(14 O0(y0)). (75)

Setting / = k in (74), we obtain

arlgn(s)] = — e '+ 0kn2+k 'nn)).

B?n?
This equality and formulas (64), (65Bpreie theltheotemiversitaetsbibliothek Augsburg
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24 S. V. Nagaev and V. 1. Vakhtel

4. PROOF OF THEOREM 2

First we assume that k > Anlnn, where A is chosen so that the relation
r(;knlnn — 0(n71) (76)

holds for any k > AnInn. The existence of such A follows from (65).
Furthermore, by virtue of Theorem 1

2k—1 . .
PZizb=)Y 2 (e =22 22 (DY (4 5 0tn ) + Pz, = 20),
B2n? Bn  Bn? n

i=k
)
Let y > 0. Then
2k—1 . 00
2i 2 i i 2k 2 k 5
= s, - < = _ = —2i/Bn
ZCXP{ Bn Byn21n<n>}_eXp{ Bn B’ ()}Ze
i=k i=0
Bn 2k 2k k (140 ))
= — —_— =y = - n
2 Xp Bn Byn n

ZZ’H 2% 2 0 (i
; kexp Bn B 2"\
1=
k—1 .
2k 2 k 2k 2 i 2k
zexp{—a—g " ( )}Z {___E”ﬁm(?)}

i=0

_ Bn % 2k OV )
TP\ "B B2 n " ’

From the two last relations we find that

Zki 2% 2 0 (i
_2 2t (L
exp Bn Byn2 n

i=k
Bn 2%k 2k k _
:—exp{—E—By 21n< )}(l—i—O(kn ). (78)

for y > 0. Similar reasoning proves the validity of (78) for y < 0 as well.
Let us estimate the second term in the right-hand side of (77). It is not difficult to see
that

P(Zy > 2k) < s 2 (fu(s) — £(0))
forany s > 1. Setting s = rp in this inequality, we arrive at
P(Z, > 2k) < eliGrotehi @ |=rO¢kiadnfitipinek Augsburg
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Limit theorems for probabilities of large deviations 25

In view of (65) and the choice of A,
3 —k k 2k 2k k
P(Z,=2k)=0kn""ry") = 0| 5 expl—7= — %7 In{ = . (79
n n n

From (77), (78), and (79) we obtain (11).
It remains to demonstrate that (11) is true for k < An Inn. From (10) we see that

| Sy
—— ————=1In|(- n” ' Inn
“P1 "B B2 n

uniformly in i such thati = O (nInn). Therefore,

202 L (Y 4 o )
B_n ?ﬁn " n nn

+P(Z, > k+ inlnn). (80)

k+Anlnn {

P(Zn 2]() = ( Z Bz—nzexp

i=k

Reasoning as in the proof of (78), we obtain

"“2”5“” 2% 2 i (i
exp Bn Byn2 n n

i=k
__ Bn 2k 2 k1 k 1+ 0" 1nn)
== exp Bn Byn2 ni - n~ lnn)).

The asymptotic behaviour of the second term in the right-hand side of (80) has been cleared
up while studying the case k > AnInn. We thus arrive at the equality

P(Z, > k) = Bi exp {—ﬁ - Ey% In (%)} (1+ 0(m 'Inn))

n Bn B
2 2k + Anl 2 k+xinl k+ Anl
+ —exp —ﬁ——y o n e (14+ 0@ "nn)).
Bn Bn B n? n

It is not difficult to see that the constraint imposed on A implies the relation

2k +Anlnn 2 k+Ainlnn k+ Anlnn
exp y— - =y In
2
_¢ 2k 2 k1 k
- ————=y—Inl|—-)}.
SRV B B n

Bn B n
Therefore,
2 2k 2k k -
P(Z,>k)= —exp{—— ——y—=In{= )t (14+ O " Inn)).
Bn n n

Theorem 2 is thus proved.
In conclusion, we would like to express our gratitude to the reviewer who directed the
authors’ attention to a series of inaccuracies and misprints and made a series of remarks

which served to improve the presentaticaiofthét resultsniversitaetsbibliothek Augsburg
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